Lab 1:
Monte Carlo
Statistical Analysis



1. Overview

This lab focuses on the basics of analyzing data from Monte Carlo (MC) calculations. It
covers averaging MC variables, considering the autocorrelation and MC time step, blocking
the averages, reducing the error in the average, and scaling the variational Monte Carlo
(VMC) algorithm up with increasing particle number. In this lab, participants will use
data from VMC calculations of a simple one-electron system with an analytically soluble
system (the ground state of the hydrogen atom) to understand how to interpret a MC
situation. Most of these analyses will also carry over to diffusion Monte Carlo (DMC)
simulations.

1.1 How to get the most out of this lab

Be sure to practice using the various flags in the gmeca tool to analyze the data. Although
some features are not yet implemented, this will get you used to seeing how the values in
the data files produce the averages, which are the ultimate result of the MC simulations.

1.2 Lab directories and files

Lab_1_MC_Analysis/

atom - H atom VMC calculation
H.s000.scalar.dat - H atom VMC data
H.xml - H atom VMC input file
autocorrelation - varying autocorrelation
H.dat - data for gnuplot
H.plt - gnuplot for time step vs. E_L, tau_c
H.s000.scalar.dat - H atom VMC data: time step = 10
H.s001.scalar.dat - H atom VMC data: time step = 5
H.s002.scalar.dat - H atom VMC data: time step = 2
H.s003.scalar.dat - H atom VMC data: time step = 1
H.s004.scalar.dat - H atom VMC data: time step = 0.5
H.s005.scalar.dat - H atom VMC data: time step = 0.2
H.s006.scalar.dat - H atom VMC data: time step = 0.1
H.s007.scalar.dat - H atom VMC data: time step = 0.05
H.s008.scalar.dat - H atom VMC data: time step = 0.02
H.s009.scalar.dat - H atom VMC data: time step = 0.01
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- Python scripts for average/std. dev.
- average five E_L from H atom VMC
- standard deviation using (E_L)"2
- standard deviation around the mean

varying basis set for orbitals
- H atom VMC data using STO basis
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- H atom VMC data using STO0-6G basis
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H.s001.scalar.dat = 0 O ! ! 2000 blocks
H.s002.scalar.dat = U o ! ! 8000 blocks
H.s003.scalar.dat = 0 O ! " 32000 blocks
H.s004.scalar.dat = U o ! " 128000 blocks
H.xml - H atom VMC input file

dimer - comparing no and simple Jastrow factor

H2_STO___no_jastrow.s000.scalar.dat - H dimer VMC data without Jastrow

H2_STO_with_jastrow.s000.scalar.dat - H dimer VMC data with Jastrow

docs - documentation
Lab_1_MC_Analysis.pdf - this document
Lab_1_Slides.pdf - slides presented in the lab
nodes - varying number of computing nodes
H.dat - data for gnuplot
H.plt - gnuplot for N_node vs. E
H.s000.scalar.dat - H atom VMC data with 32 nodes
H.s001.scalar.dat - H atom VMC data with 128 nodes
H.s002.scalar.dat - H atom VMC data with 512 nodes
problematic - problematic VMC run
H.s000.scalar.dat - H atom VMC data with a problem
size - scaling with number of particles
o1________ H.s000.scalar.dat - H atom VMC data
02_______ H2.s000.scalar.dat - H dimer " "
06________ C.s000.scalar.dat - C atom " "
10______ CH4.s000.scalar.dat - methane " "
12_______ C2.s000.scalar.dat - C dimer " "
16_____ C2H4 .s000.scalar.dat - ethene "
18___CH4CH4.s000.scalar.dat - methane dimer VMC data
32_C2H4C2H4 .s000.scalar.dat - ethene dimer ! "
nelectron_tcpu.dat - data for gnuplot
Nelectron_tCPU.plt - gnuplot for N_elec vs. t_CPU

1.3 Atomic units

QMCPACK operates in Hartree atomic units to reduce the number of factors in the
Schrédinger equation. Thus, the unit of length is the bohr (5.291772 x10~ m = 0.529177
A); the unit of energy is the hartree (4.359744 x10718 J = 27.211385 V). The energy of
the ground state of the hydrogen atom in these units is -0.5 hartrees.



2. Monte Carlo data analysis:
average, error bars, variance

2.1 Reviewing statistics

We will practice taking the average (mean) and standard deviation of some Monte Carlo
data by hand to review the basic definitions.

Enter Python’s command line by typing python [Enter|. You will see a prompt
“> > >’7 .

The mean of a data set is given by:

1
T = szzza% (2.1.1)

To calculate the average of five local energies from a MC calculation of the ground state
of an electron in the hydrogen atom, input (truncate at the thousandths place if you cannot
copy and paste; script versions are also available in the average directory):
( (-0.45298911858) + (-0.45481953564) + (-0.48066105923) + (-0.47316713469)
+ (-0.46204733302) )/5.
Then, press [Enter]| to get:

>>> ((-0.45298911858) + (-0.45481953564) + (-0.48066105923) +
(-0.47316713469) + (-0.4620473302))/5.
-0.46473683566800006

To understand the significance of the mean, we also need the standard deviation around
the mean of the data (also called the error bar), given by:

IR .
o= N(Nl);(xl—x) (2.1.2)

To calculate the standard deviation around the mean (-0.464736835668) of these five

data points, put in:
( (1./(5.%x(5.-1.))) = ( (-0.45298911858-(-0.464736835668))**2 +

(-0.45481953564-(-0.464736835668) ) **2 + (-0.48066105923-(-0.464736835668) ) **2
+ (-0.47316713469-(-0.464736835668) ) **2 + (-0.46204733302-(-0.464736835668) ) **2
) )*x0.5

Then, press [Enter] to get:
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>>> ( (1./(5.%(5.-1.))) * ( (-0.45298911858-(-0.464736835668) ) **2 +
(-0.45481953564-(-0.464736835668) ) **2 + (-0.48066105923-(-0.464736835668))**2 +
(-0.47316713469-(-0.464736835668) ) **2 + (-0.46204733302-(-0.464736835668) ) **2

) )**0.5

0.0053303187464332066

Thus, we might report this data as having a value -0.465 +/- 0.005 hartrees. This
calculation of the standard deviation assumes that the average for this data is fixed, but
we may continually add Monte Carlo samples to the data so it is better to use an estimate
of the error bar that does not rely on the overall average. Such an estimate is given by:

;X
o= N_1 Z [(22); — (24)?] (2.1.3)

=1

To calculate the standard deviation with this formula, input the following, which in-
cludes the square of the local energy calculated with each corresponding local energy:
( (1./(5.-1.)) = ( (0.60984565298-(-0.45298911858)**2) +
(0.61641291630-(-0.45481953564) **2) + (1.35860151160-(-0.48066105923)**2) +
(0.78720769003-(-0.47316713469) *x2) + (0.56393677687-(-0.46204733302)**2) ) )**0.5

and press [Enter] to get:

>>> ((1./(5.-1.))*((0.60984565298-(-0.45298911858) **2) +
(0.61641291630-(-0.45481953564) **x2)+(1.35860151160-(-0.48066105923) **2) +
(0.78720769003-(-0.47316713469) **x2)+(0.56393677687-(-0.46204733302) **2) )
)**x0.5

0.84491636672906634

This much larger standard deviation, acknowledging that the mean of this small data
set is not the average in the limit of infinite sampling more accurately, reports the value of
the local energy as -0.5 +/- 0.8 hartrees.

Type quit() and press [Enter] to exit the Python command line.

2.2 Inspecting Monte Carlo data

QMCPACK outputs data from MC calculations into files ending in scalar.dat. Several
quantities are calculated and written for each block of Monte Carlo steps in successive
columns to the right of the step index.
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Change directories to atom, and open the file ending in scalar.dat with a text editor
(e.g., vi *.scalar.dat or emacs *.scalar.dat. If possible, adjust the terminal so that lines
do not wrap. The data will begin as follows (broken into three groups to fit on this page):

# index LocalEnergy LocalEnergy_sq LocalPotential
0 -4.5298911858e-01 6.0984565298e-01  -1.1708693521e+00
1 -4.5481953564e-01 6.1641291630e-01  -1.1863425644e+00
2 -4.8066105923e-01 1.3586015116e+00 -1.1766446209e+00
3 -4.7316713469e-01 7.8720769003e-01  -1.1799481122e+00
4 -4.6204733302e-01 5.6393677687e-01  -1.1619244081e+00
5 -4.4313854290e-01 6.0831516179e-01  -1.2064503041e+00
6 -4.5064926960e-01 5.9891422196e-01  -1.1521370176e+00
7 -4.5687452611e-01 5.8139614676e-01  -1.1423627617e+00
8 -4.5018503739e-01 8.4147849706e-01  -1.1842075439e+00
9 -4.3862013841e-01 5.5477715836e-01  -1.2080979177e+00

The first line begins with a #, indicating that this line does not contain MC data but
rather the labels of the columns. After a blank line, the remaining lines consist of the MC
data. The first column, labeled index, is an integer indicating which block of MC data is
on that line. The second column contains the quantity usually of greatest interest from the
simulation, the local energy. Since this simulation did not use the exact ground state wave
function, it does not produce -0.5 hartrees as the local energy although the value lies within
about 10%. The value of the local energy fluctuates from block to block and the closer the
trial wave function is to the ground state, the smaller these fluctuations will be. The next
column contains an important ingredient in estimating the error in the MC average-the
square of the local energy—found by evaluating the square of the Hamiltonian.

Kinetic Coulomb BlockWeight
7.1788023352e-01  -1.1708693521e+00 1.2800000000e+04
7.3152302871e-01  -1.1863425644e+00 1.2800000000e+04
6.9598356165e-01  -1.1766446209e+00 1.2800000000e+04
7.0678097751e-01  -1.1799481122e+00 1.2800000000e+04
6.9987707508e-01  -1.1619244081e+00 1.2800000000e+04
7.6331176120e-01  -1.2064503041e+00 1.2800000000e+04
7.0148774798e-01  -1.1521370176e+00 1.2800000000e+04
6.8548823555e-01  -1.1423627617e+00 1.2800000000e+04
7.3402250655e-01  -1.1842075439e+00 1.2800000000e+04
7.6947777925e-01  -1.2080979177e+00 1.2800000000e+04

The fourth column from the left consists of the values of the local potential energy. In
this simulation, it is identical to the Coulomb potential (contained in the sixth column)



CHAPTER 2. MONTE CARLO DATA ANALYSIS:
AVERAGE, ERROR BARS, VARIANCE 7

because the one electron in the simulation has only the potential energy coming from
its interaction with the nucleus. In many-electron simulations, the local potential energy
contains contributions from the electron-electron Coulomb interactions and the nuclear
potential or pseudopotential. The fifth column contains the local kinetic energy value for
each MC block, obtained from the Laplacian of the wave function. The sixth column shows
the local Coulomb interaction energy. The seventh column displays the weight each line of
data has in the average (the weights are identical in this simulation).

BlockCPU AcceptRatio

6.0178991748e-03 9.8515625000e-01
5.8323097461e-03 9.8562500000e-01
5.8213412744e-03 9.8531250000e-01
5.8330412549e-03 9.8828125000e-01
5.8108362256e-03 9.8625000000e-01
5.8254170264e-03 9.8625000000e-01
5.8314813086e-03 9.8679687500e-01
5.8258469971e-03 9.8726562500e-01
5.8158433545e-03 9.8468750000e-01
5.7959401123e-03 9.8539062500e-01

The eighth column shows the CPU time (in seconds) to calculate the data in that line.
The ninth column from the left contains the acceptance ratio (1 being full acceptance) for
Monte Carlo steps in that line’s data. Other than the block weight, all quantities vary from
line to line.

Exit the text editor ([Esc] :q! [Enter] in vi, [Ctrl]-x [Ctrl]-c in emacs).

2.3 Averaging quantities in the MC data

QMCPACK includes the gqmca Python tool to average quantities in the scalar.dat file (and
also the dmc.dat file of DMC simulations). Without any flags, gmca will output the average
of each column with a quantity in the scalar.dat file as follows.

Execute qmca by gqmeca *.scalar.dat, which for this data outputs:

H series O

LocalEnergy = -0.45446 +/- 0.00057
Variance = 0.529 +/- 0.018
Kinetic = 0.7366 +/- 0.0020
LocalPotential = -1.1910 +/- 0.0016
Coulomb -1.1910 +/- 0.0016
LocalEnergy_sq = 0.736 +/- 0.018
BlockWeight = 12800.00000000 +/- 0.00000000
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BlockCPU = 0.00582002 +/- 0.00000067
AcceptRatio = 0.985508 +/- 0.000048
Efficiency = 0.00000000 +/- 0.00000000

After one blank, qmca prints the title of the subsequent data, gleaned from the data
file name. In this case, H.s000.scalar.dat became “H series 0”. Everything before the first
“.s” will be interpreted as the title, and the number between “.s” and the next “.” will be
interpreted as the series number.

The first column under the title is the name of each quantity qmca averaged. The
column to the right of the equal signs contains the average for the quantity of that line, and
the column to the right of the plus-slash-minus is the statistical error bar on the quantity.
All quantities calculated from MC simulations have and must be reported with a statistical
error bar!

Two new quantities not present in the scalar.dat file are computed by qmca from the
data—variance and efficiency. We will look at these later in this lab.

To view only one value, gmca takes the -q (quantity) flag. For example, the output
of gqmca -q LocalEnergy *.scalar.dat in this directory produces a single line of output:

H series O LocalEnergy = -0.454460 +/- 0.000568

Type qmca —help to see the list of all quantities and their abbreviations.

2.4 Evaluating MC simulation quality

There are several aspects of a MC simulation to consider in deciding how well it went.
Besides the deviation of the average from an expected value (if there is one), the stability
of the simulation in its sampling, the autocorrelation between MC steps, the value of the
acceptance ratio (accepted steps over total proposed steps), and the variance in the local
energy all indicate the quality of a MC simulation. We will look at these one by one.

Tracing MC quantities

Visualizing the evolution of MC quantities over the course of the simulation by a trace offers
a quick picture of whether the random walk had expected behavior. qmca plots traces with
the -t flag.

Type qmca -q e -t H.s000.scalar.dat, which produces a graph of the trace of the
local energy:
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Trace of LocalEnergy
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The solid black line connects the values of the local energy at each MC block (labeled
“samples”). The average value is marked with a horizontal, solid red line. One standard
deviation above and below the average are marked with horizontal, dashed red lines.

The trace of this run is largely centered around the average with no large-scale oscilla-
tions or major shifts, indicating a good quality MC run.

Try tracing the kinetic and potential energies, seeing that their behavior is comparable

to the total local energy.
Change to directory problematic and type qmca -q e -t H.s000.scalar.dat to pro-

duce this graph:
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Here, the local energy samples cluster around the expected -0.5 hartrees for the first
150 samples or so and then begin to oscillate more wildly and increase erratically toward

0, indicating a poor quality MC run.
Again, trace the kinetic and potential energies in this run and see how their behavior
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compares to the total local energy.

Blocking away autocorrelation

Awutocorrelation occurs when a given MC step biases subsequent MC steps, leading to sam-
ples that are not statistically independent. We must take this autocorrelation into account
in order to obtain accurate statistics. gqmca outputs autocorrelation when given the --sac

flag.

Change to directory autocorrelation and type gmca -q e --sac H.s000.scalar.dat.

H series O LocalEnergy = -0.454982 +/- 0.000430

1.0

The value after the error bar on the quantity is the autocorrelation (1.0 in this case).

Proposing too small a step in configuration space, the MC time step, can lead to auto-
correlation since the new samples will be in the neighborhood of previous samples. Type
grep timestep H.xml to see the varying time step values in this QMCPACK input file

(H.xml):

<parameter name="timestep">10</parameter>
<parameter name="timestep">5</parameter>
<parameter name="timestep">2</parameter>
<parameter name="timestep">1</parameter>
<parameter name="timestep">0.5</parameter>
<parameter name="timestep">0.2</parameter>
<parameter name="timestep">0.1</parameter>
<parameter name="timestep">0.05</parameter>
<parameter name="timestep">0.02</parameter>
<parameter name="timestep">0.01</parameter>
<parameter name="timestep">0.005</parameter>
<parameter name="timestep">0.002</parameter>
<parameter name="timestep">0.001</parameter>
<parameter name="timestep">0.0005</parameter>
<parameter name="timestep">0.0002</parameter>
<parameter name="timestep">0.0001</parameter>

Generally, as the time step decreases, the autocorrelation will increase (caveat: very

large time steps will also have increasing autocorrelation). To see this, type gqmca -q e
--sac *.scalar.dat to see the energies and autocorrelation times, then plot with gnuplot
by inputting gnuplot H.plt:



CHAPTER 2. MONTE CARLO DATA ANALYSIS:

AVERAGE, ERROR BARS, VARIANCE 11
+
_Eﬁ 13 -
I '
g5 0 '
cm Fr T
2= 5 f .
83 e *
5 3T + + I
= 1 i L L T + + -!- + + -!- + + L ]
-0.44 | -
- =8,45 | 1 P
- n _I_ FF + ¥+ 4+ ¥ 4 F
2 -a.46 1[ 1L .
St
1 m -H'd? B 7
Wl =
~ -B.48 -
-0,49 | -
B.8001 8,881 @6.81 6.1 1 10

Tine step {1/hartree}

The error bar also increases with the autocorrelation.

Press q [Enter] to quit gnuplot.

To get around the bias of autocorrelation, we group the MC steps into blocks, take the
average of the data in the steps of each block, and then finally average the averages in all
the blocks. QMCPACK outputs the block averages as each line in the scalar.dat file. (For
DMC simulations, in addition to the scalar.dat, QMCPACK outputs the quantities at each
step to the dmc.dat file, which permits reblocking the data differently from the specification
in the input file.)

Change directories to blocking. Here we look at the time step of the last data set
in the autocorrelation directory. Verify this by typing grep timestep H.xml to see
that all values are set to 0.001. Now to see how we will vary the blocking, type grep -A1l
blocks H.xml. The parameter “steps” indicates the number of steps per block, and the
parameter “blocks” gives the number of blocks. For this comparison, the total number of
MC steps (equal to the product of “steps” and “blocks”) is fixed at 50000. Now check the
effect of blocking on autocorrelation—type qmeca -q e --sac *scalar.dat to see the data
and gnuplot H.plt to visualize the data:
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The greatest number of steps per block produces the smallest autocorrelation time. The

larger number of blocks over which to average at small step-per-block number masks the

corresponding increase in error bar with increasing autocorrelation.
Press q [Enter] to quit gnuplot.

Balancing autocorrelation and acceptance ratio

Adjusting the time step value also affects the ratio of accepted steps to proposed steps.
Stepping nearby in configuration space implies that the probability distribution is similar
and thus more likely to result in an accepted move. Keeping the acceptance ratio high
means the algorithm is efficiently exploring configuration space and not sticking at particular
configurations. Return to the autocorrelation directory. Refresh your memory on the
time steps in this set of simulations by grep timestep H.xml. Then, type qmca -q ar
*scalar.dat to see the acceptance ratio as it varies with decreasing time step:

series
series
series
series
series
series

fa e siis o o = i = e s i a of

series

3 01> W N~ O

AcceptRatio
AcceptRatio
AcceptRatio
AcceptRatio
AcceptRatio
AcceptRatio
AcceptRatio

O O O O O O O

.047646
.125361
.328590
.535708
. 732537
.903498
.961506

+/-
+/-
+/-
+/-
+/-
+/-
+/-

.000206
.000308
.000340
.000313
.000234
.000156
.000083
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H series 7 AcceptRatio = 0.985499 +/- 0.000051

H series 8 AcceptRatio = 0.996251 +/- 0.000025

H series 9 AcceptRatio = 0.998638 +/- 0.000014

H series 10 AcceptRatio = 0.999515 +/- 0.000009

H series 11 AcceptRatio = 0.999884 +/- 0.000004

H series 12 AcceptRatio = 0.999958 +/- 0.000003

H series 13 AcceptRatio = 0.999986 +/- 0.000002

H series 14 AcceptRatio = 0.999995 +/- 0.000001

H series 15 AcceptRatio = 0.999999 +/- 0.000000

By series 8 (time step = 0.02), the acceptance ratio is in excess of 99%.

Considering the increase in autocorrelation and subsequent increase in error bar as time
step decreases, it is important to choose a time step that trades off appropriately between
acceptance ratio and autocorrelation. In this example, a time step of 0.02 occupies a spot
where acceptance ratio is high (99.6%), and autocorrelation is not appreciably larger than
the minimum value (1.4 vs. 1.0).

Considering variance

Besides autocorrelation, the dominant contributor to the error bar is the variance in the
local energy. The variance measures the fluctuations around the average local energy,
and, as the fluctuations go to zero, the wave function reaches an exact eigenstate of the
Hamiltonian. qmca calculates this from the local energy and local energy squared columns
of the scalar.dat.

Type qmca -q v H.s009.scalar.dat to calculate the variance on the run with time
step balancing autocorrelation and acceptance ratio:

H series 9 Variance = 0.513570 +/- 0.010589

Just as the total energy doesn’t tell us much by itself, neither does the variance. How-
ever, comparing the ratio of the variance to the energy indicates how the magnitude of
the fluctuations compares to the energy itself. Type qmca -q ev H.s009.scalar.dat to
calculate the energy and variance on the run side by side with the ratio:

LocalEnergy Variance ratio
H series 0 -0.454460 +/- 0.000568 0.529496 +/- 0.018445 1.1651

1.1651 is a very high ratio indicating the square of the fluctuations is on average larger
than the value itself. In the next section, we will approach ways to improve the variance
that subsequent labs will build upon.
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2.5 Reducing statistical error bars

Increasing MC sampling

Increasing the number of MC samples in a data set reduces the error bar as the inverse of
the square root of the number of samples. There are two ways to increase the number of
MC samples in a simulation: running more samples in parallel and increasing the number of
blocks (with fixed number of steps per block, this increases the total number of MC steps).

To see the effect of the running more samples in parallel, change to the directory nodes.
The series here increases the number of nodes by factors of four from 32 to 128 to 512.
Type gqmca -q ev *scalar.dat and note the change in the error bar on the local energy
as the number of nodes. Visualize this with gnuplot H.plt:

-8, 446
-8,448 | l

-8.45 | -
-8,452 | .
-8,454 | il % .

-8.436 1

E_total {Ha}

-8,458 | -

-8.46 | -
-8,462 | 1
-8,464 | -

148 1488 16688

Munber of nodes

Increasing the number of blocks, unlike running in parallel, increases the total CPU
time of the simulation.

Press q [Enter] to quit gnuplot.

To see the effect of increasing the block number, change to the directory blocks. To
see how we will vary the number of blocks, type grep -A1l blocks H.xml. The number
of steps remains fixed, thus increasing the total number of samples. Visualize the tradeoff
by inputting gnuplot H.plt:
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t_CPU,total {s}

E_total
{hartree}

Press q [Enter] to quit gnuplot.

1688

1688

-8, 445
-8,45
-8,452
-8,454
-8,456
-8, 458

1a

15

T T =
R + J
+
+
i + J
i J[ ][ ; .
1000 10000 100008

Improving the basis set

Hunber of blocks

In all of the above examples, we are using the sum of two gaussian functions (STO-2G) to
approximate what should be a simple decaying exponential (STO = Slater-type orbital) for
the wave function of the ground state of the hydrogen atom. The sum of multiple copies of
a function varying each copy’s width and amplitude with coefficients is called a basis set.
As we add gaussians to the basis set, the approximation improves, the variance goes toward
zero and the energy goes to -0.5 hartrees. In nearly every other case, the exact function is
unknown, and we add basis functions until the total energy does not change within some

threshold.

Change to the directory basis and look at the total energy and variance as we change
the wave function by typing qmca -q ev H_*:

H_ST0-2G
H_ST0-3G
H_STO0-6G
H__exact

series
series
series
series

O O O O

LocalEnergy

-0.454460
-0.465386
-0.471332
-0.500000

+/- 0.000568
+/- 0.000502
+/- 0.000491
+/- 0.000000

0.529496
0.410491
0.213919
0.000000

Variance

+/- 0.018445
+/- 0.010051
+/- 0.012954
+/- 0.000000

ratio
1.1651
0.8820
0.4539
-0.0000
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qmeca also puts out the ratio of the variance to the local energy in a column to the right
of the variance error bar. A typical high quality value for this ratio is lower than 0.1 or
so—none of these few-gaussian wave functions satisfy that rule of thumb.

Use gqmca to plot the trace of the local energy, kinetic energy, and potential energy of
H__exact—the total energy is constantly -0.5 hartree even though the kinetic and potential
energies fluctuate from configuration to configuration.

Adding a Jastrow factor

Another route to reducing the variance is the introduction of a Jastrow factor to account for
electron-electron correlation (not the statistical autocorrelation of Monte Carlo steps but
the physical avoidance that electrons have of one another). To do this, we will switch to the
hydrogen dimer with the exact ground state wave function of the atom (STO basis)—this
will not be exact for the dimer. The ground state energy of the hydrogen dimer is -1.174
hartrees.

Change directories to dimer and put in qmca -q ev *scalar.dat to see the result
of adding a simple, one-parameter Jastrow to the STO basis for the hydrogen dimer at
experimental bond length:

LocalEnergy Variance
H2_STO___no_jastrow series 0 -0.876548 +/- 0.005313 0.473526 +/- 0.014910

H2_STO_with_jastrow series O -0.912763 +/- 0.004470 0.279651 +/- 0.016405

The energy reduces by 0.044 +/- 0.006 hartrees and the variance by 0.19 +/- 0.02. This
is still 20% above the ground state energy, and subsequent labs will cover how to improve
on this with improved forms of the wave function that capture more of the physics.

2.6 Scaling to larger numbers of electrons

Calculating the efficiency

The inverse of the product of CPU time and the variance measures the efficiency of an MC
calculation. Use qmca to calculate efficiency by typing qmca -q eff *scalar.dat to see the
efficiency of these two Ho calculations:

16698.725453 +/- 0.000000
52912.365609 +/- 0.000000

H2_STO___no_jastrow series O Efficiency
H2_STO_with_jastrow series O Efficiency

The Jastrow factor increased the efficiency in these calculations by a factor of three,
largely through the reduction in variance (check the average block CPU time to verify this
claim).
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Scaling up

To see how MC scales with increasing particle number, change directories to size. Here are
the data from runs of increasing number of electrons for H, Hy, C, CHy, Ca, CoHy, (CHy)o,
and (CoHy)o using the STO-6G basis set for the orbitals of the Slater determinant. The
file names begin with the number of electrons simulated for those data.

Use qmca -q bc *scalar.dat to see that the CPU time per block increases with number
of electrons in the simulation, then plot the total CPU time of the simulation by gnuplot
Nelectron_ tCPU.plt:

H..'q T T T T T T

8,35

8.3

8.25

8.2

8.15

t_CPU {s/block}

8,85

H 1 1 1 1 1 1
1) a 18 15 208 29 11 3D

Nunber of electrons

The green pluses represent the CPU time per block at each electron number. The red
line is a quadratic fit to those data. For a fixed basis set size, we expect the time to scale
quadratically up to 1000s of electrons, at which point a cubic scaling term may become
dominant. Knowing the scaling allows you to roughly project the calculation time for a
larger number of electrons.

Press q [Enter] to quit gnuplot.

This isn’t the whole story, however. The variance of the energy also increases with a
fixed basis set as the number of particles increases at a faster rate than the energy decreases.
To see this, type qmca -q ev *scalar.dat:

LocalEnergy Variance
01 H series 0 -0.471352 +/- 0.000493 0.213020 +/- 0.012950

02 H2 series 0 -0.898875 +/- 0.000998 0.545717 +/- 0.009980
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06________ C
10______ CH4
12_______ Cc2
16_____ C2H4
18___CH4CH4

32_C2H4C2H4

series
series
series
series
series
series

O O O O © O

-37.
-38.
-72.
-75.
-58.
-91.

608586
821513
302390
488701
459857
567283

+/-
+/-
+/-
+/-
+/-
+/-

O O O O O O

.020453
.022740
.037691
.042919
.039309
.048392

184.
169.
491.
404.
498.
632.

322000
797871
416711
218115
579645
114026

+/-
+/-
+/-
+/-
+/-
+/-

18

45.481193
24.765674
106.090103
60.196642
92.480126
69.637760

The increase in variance is not uniform, but the general trend is upward with a fixed
wave function form and basis set. Subsequent labs will address how to improve the wave
function in order to keep the variance manageable.
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