Variational Monte Carlo

Historically first quantum simulation method
Slater-Jastrow trial function

Calculations of properties: g(r) n(k).
Example: electron gas.



The “Variational Theorem”

Assume (R;a) 1s atrial function where R are the quantum degrees of
freedom (positions, spin) “a” are “variational” parameters.

E,(a)= % = E, = exact ground state energy

(w(a)Hy(a)) = [dRy" (R;a)Hy (R a)
E,(a)=E, = y(R;a)=¢,(R)

E, (R;a)= Z/J(%H Y (R;a) ="local energy" of trial function

5

Ey(a)= <<EL (R;a)>>w2 where <<0>> W(@0y (@)

o v
o*(a)= <w(a)(<Z;i;(::));w(a)> = <<(E (Ra)-E, (a!))2>>w2 = variance of the trial function
L) o (D 5, - , o)) -0
da a

Conditions: matrix elements exist, symmetries and boundary conditions
are correct.




First Major QMC Calculation

PhD thesis of W. McMillan (1964) University of Illinois.
VMC calculation of ground state of liquid helium 4.
Applied MC techniques from classical liquid theory.
Ceperley, Chester and Kalos (1976) generalized to fermions.
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Ground State of Liquid He't

W. L. McMiLLan®
Department of Physics, University of [linns, ['rbana, [Uinois
(Received 16 November 1964)

The properties of the ground state of liquid He# are studied using a variational wave function of the form
IT;¢;f(r;,). The Lennard-Jones 12-6 potential is used with parameters determined from the gas data by
deBoer and Michiels. The configuration space integrals are performed by a Monte Carlo technique for 32
and 108 atoms in a cube with periodic boundary conditions. With f(r) =exp[— (2.6 £,7)%], the ground-
state energy is found to be —0.78 X 107!% ergs/atom, which is 2077 above the experimental value. The liquid
structure factor and the two-particle correlation function are in reasonably good agreement with the x-ray
and neutron scattering experiments.

eZero temperature (single state) method



Variational Monte Carlo (VMC)

Variational Principle. Given an

appropriate trial function: f dR <2/J ‘H ‘ 1/}>
— Continuous v = =
— Proper symmetry f dR <1//1ﬂ>
— Normalizable 5
— Finite variance 5 f dR <Z/j ‘H ‘Z/J> 2
Quantum chemistry uses a product of o = - E Vv
single particle functions f dR <1/}z/j>
With MC we can use any “computable”
function.
— Sample R from |y[?> using MCMC.
— Take average of local energy: E I (R) =N [l// - (R)H (7 (R)]
— Optimize y to get the best upper bound
— Erlior in er\lvergy%s 2"d order o EV = <E L (R)>z//2 = Eo

Better wavefunction, lower variance!
“Zero variance’ principle. (non-classical)



VARIATIONAL MONTE CARLO CODE

call initstate (s_old) < Initialize the state
p old= psi2(s_old) Evaluate psi_trial
LOOP {
call sample (s _old,s new, T _new,1) <€ Sample new state
p_ new= psi2 (s_new) Evaluate psi_trial

call sample (s_new,s old,T_old,0) <«—— Find transition prob.
A = (p_new/T_new)/(p_old/T_old) for going backward

if(A > rand () ) { N T~

s old=s new

p_old=p_new

naccept = naccept +1} _
call averages (s_old) «—}

Acceptance prob.

~ — Accept the move

Collect statistics




Periodic boundary conditions

« Minimum Image Convention:take the closest distance

t|y; = min ( r+nL)
Potential 1s cutoff so that V(r)=0 for r>L/2 since force
needs to be continuous. Remember perturbation theory.
« Image potential

V= X, v(r-r;+nL)

For long range potential this leads to the Ewald image
potential. You need a background and convergence
method.



What do we use for the trial function?

Formal requirements antisymmetry, continuity, finite
variance.

Mean field approaches Slater determinant,
Expand in basis sets e.g. multideterminants, CI.
Local energy argument

— Control singularity at small r, or r,,. Leads to cusp
condition.

— Behavior at large r, plasmons, van der Waals
(dispersion) interaction

Feynman-Kacs formula gives connection to local energy
— Jastrow, Backflow, three-body interactions



Two electron (bose) ground state.

Assume spin %2 fermions (or bosons).

Total wt is antisymmetric.

Assume spin function is a singlet (AW —N/AN)

Then spatial wavefunction 1s symmetric.
1I’(’/197”2 ) = ‘P(?‘z,ri)

If ground state 1s non-degenerate (true if space is

“ergodic” or connected) then we can assume y (r,,1,) is
real, positive and symmetric by fixing the “gauge.”

Why? Otherwise we could always lower the energy.

S =) u(r,n)=u(r,n)



f(r)=exp(-r)
W i =¢(’”1)¢(”2) ¢(l’)=fa(r)+fb(r)
r/*\r‘” quL=]2(’”1)fb(7’2)+ﬁ(lq)]2(r2)

H, molecule:

_ ()
lljc — ]Ij 12

HLe

. 1
lim, u(rl,rz) =1, _E‘rl —r2‘

Cusp condition gives derivative of u(r,,r,)
— when two electrons approach each other
— when an electron gets close to a nuclei.

Correlation energy 1.11eV, spherical Jastrow 1.06eV



Generalized Feynman-Kacs

e We can find the correction to any wave function.

O(R,)) = (R){ exp| | diE, (R(1))

RW

dR

o n()—Viny (R(2))

e The exact wavefunction is average over paths starting at R,,.

e Gives intuition about how to how to improve it a given
wavefunction.

e Can be used to compute the wavefunction (Next lecture).



Cumulant Approximation

In FK formula take the T
average into the exponent V(&) _ exp| — J.dtV(R(t))
It is possible to evaluate

the average using fourier -
transforms.

Very accurate for Coulomb U (R))= Jdﬂ/ ]
problems

Result: take functional L tk?

form of local energy and V (r,t) — J.dke 2y
smooth it out.

Suppose we take for w(R)
an exact solution to the
non-interacting SE. Then
local energy is e-e
interaction—> Jastrow

RW




Trial function for bosons: “Jastrow’ or pair product

* We want finite variance of the local —u(r,)
energy. I/J(R) = He '

 Whenever 2 atoms get close together i<j
wavefunction should vanish.

* The function u(r) is similar to Ez// (R) = E [V(I’ij) - 2/1V2u(rij)] - /’LE Gi2

classical potential i<j
» Local energy has the form:
el enray G, = 3 Vu(r)
G 1s the pseudoforce: -
If v(r) diverges as ! how should u(r) rl = —u"(0)—2u'(0)+ (u '(O))2 +...
diverge? Assume: '
u()=u(0)+u’(0)r +... u(0) = - 1
Keep N-1 electrons fixed and let 1 2
electron approach another and

analyze the singular parts of the local
energy.

Gives the cusp condition on u at small r.



Fermions: antisymmetric trial function

At mean field level the
wavefunction is a Slater
determinant. Orbitals for
homogenous systems are a filled
set of plane waves.

We can compute this energy
analytically (HF).

To include correlation we
multiply by a “Jastrow”. We need
MC to evaluate properties.

New feature: how to compute the
derivatives of a deteminant and
sample the determinant. Use
tricks from linear algebra.

Reduces complexity to O(N?).

W (R) = Det {e

ikirjni (OJ-
PBC: k-L=27an+{6}

)}

ik.r

W, (R)=Detie "’ }e

- > uy)

Slater-Jastrow trial function.

det (¢k (

1

0 det(

det ¢k

det(M)

da

>=Tr{

Z@

M %

da

}




Spin & real vs. complex

How do we treat spin in QMC?
For extended systems we use the S, representation.

We have a fixed number of up and down electrons and we
antisymmetrize among electrons with the same spin.

This leads to 2 Slater determinants.

For a given trial function, its real part is also a trial function (but it may
have different symmetries), for example momentum

(eikr e ) or (cos(kr),sin(kr))

For the ground state, without magnetic fields or spin-orbit interaction
we can always work with real functions.

However, it may be better to work with complex functions in some
cases, e.g. for small molecules.



Preview of realistic trial functions

Use LDA derived pseudopotentials
Take orbitals from other methods:
— “Gaussian” give orbitals for molecules
— DFT-PW codes give orbitals for extended systems

HF is slightly better because of self-interaction effects
within DFT

Multiply by a Jastrow function (electron gas or
otherwise). Can include higher order e-e-n terms

Must add a compensating e-n term in order to cancel
out purely repulsive character of e-e correlation.

Assuming LDA density is correct, this can be done by
making sure VMC electron density=LDA electron
density.



Spline Jastrow factor

For the HEG, the most general Jastrow factor has the form:
u(;) =u (r)+ Zuke’%;
g

u, (ry=0 forr>L/2

u (r) must be continuous, with a continuous derivative.
We can impose the cusp condition at r=0, and BC at r=L/2.

It 1s a smooth function: represent it as piecewise cubic
polynomial 1n the region 0<r < L/2.

M “Knots” at b,. Total number of unknowns 1s 2M-1

Also u, k-space Jastrows. Do we use RPA values?



Optimization of trial function
E (a) = f w(a)Hl/fz(a)
[lw()
Z w(R.,a)E(R,,a)

Try to optimize u(r) using reweighting W(R,,a) =
(correlated sampling) P (R)
— Sample R usi P(R)=Y*(R, _
o i ot the iyt E(R.@) =7 (R.a)Hy (R, a)

— Now find minima of the analytic
function E (a) 2

— Or minimize the variance (more stable E w.
but wavefunctions less accurate). !

i
2
R
i

Statistical accuracy declines away from a,,. N off =



“modern” optimization

With more computer time, we do a MC rw 1n both
R and a (parameter space).

Do usual VMC for a “block™ and collect statistics
on E, dE/da, d*E/(dada;).

Special estimators for these quantities.

Then make a change in a: a_.,=a_ + ¢ dE/da+...
[terate until convergence.

Lots more tricks to make 1t stable.

Can do hundreds of parameters.



Scalar Properties, Static Correlations and
Order Parameters

What do we get out of a simulation? Energy by itself doesn’t tell you very
much.

Other properties
Do NOT have an upper bound property

e  Only first order in accuracy

EXAMPLES
» Static properties: pressure,
* Density

» Pair correlation in real space and fourier space.
* Order parameters and broken symmetry: how to tell a liquid from a solid
* Specifically quantum: the momentum distribution



e-¢ Pair Correlation Function, g(r)

Primary quantity in a liquid is the probability distribution of pairs of
particles. Given a particle at the origin what 1s the density of
surrounding particles?

g(r) = <X o (1;-1;-1)>
p(r,r’) = <X 0 (1;-1) 0 (1;-17)>

From g(r) you can calculate all pair quantities
(potential, pressure, ...)

V= Zv(rl.j) =%J’d3r%g(r)

i<j

A function gives more information than a number!



(The static) structure factor S(k)

e The Fourier transform of the pair correlation function is the structure

factor i , N
s = {Inif) wherep, =3t
i=1

S(k)=1+ pJ- dre”™”" (g(r) — 1)

In PBC k lies on a lattice k =(2n/L) (integer vector)
problem with (2) is to extend g(r) to infinity
* S(k) 1s measured in neutron and X-Ray scattering experiments.
« Can provide a direct test of the assumed potential.
« Used to see the state of a system:
liquid, solid, glass, gas? (much better than g(r) )

* Order parameter in solid is p; where G i1s a particular wavevector
(reciprocal lattice vector).



Electron gas g(r) and S(K)




g(r) 1n liquid and solid helium

First peak is at inter-particle
spacing. (shell around the
particle)

goes out to r<L/2 in periodic
boundary conditions.

25 7

| T

60 nm™3

fcc 26.7K
i K

r (nm)



Momentum Distribution

Momentum distribution

— Classically momentum — R
distribution is always a e \ R ——— n=3w ]
Gaussian I S S I N P

— Non-classical showing effects s | . T_ Voo
of bose or fermi statistics oaf ]

— Fourier transform 1s the single n i
particle off-diagonal density llllll e, \\ _
matrix . R T

Compute with McMillan Method. " " kfkp

For fermions we need to use the
determinant update formulas to find
the effect of the movement of 1
electron.

n(r,r') = %fdrz...drNt//*(r,rz...)z/J(r',rz...)

=<1/J*(I”,I”2...)>
p(r,n...)




Derivation of momentum formula

* Suppose we want the probability n, that a given atom has momentum hk.

* Find wavefunction in momentum space by FT wrt all the coordinates and
integrating out all but one electron

2

Pr(k,,.k,) = UdR g O (R

n, = (dk,...dk, Pr(k,k,,..k,)

« Expanding out the square and performing the integrals we get.

3 3
d’rd’s e n(r)

. - d’r
= [ gy SRR =shn(ras) = [0S
Where: I’l(l”,S) = éfdl"z...dl"]vl//* (I”,I"z..J"N )l/J (S,I”z..J"N)

(states occupied with the Boltzmann distribution.)
For a homogeneous system, n(r,s)=n(|r-s|)



The electron gas
D. M. Ceperley, Phys. Rev. B 18, 3]26 (1978)

Standard model for H=—_—_ E \Vl E —

electrons 1in metals

Basis of DFT.

Characterized by 2
dimensionless 107
parameters:

— Density Iog (rS )

— 10

l<] y

Eledtron In matale [Fermi ligquid)

‘: Ly

— Temperature
r.=ala,
=¢’/Ta |

10"

What is energy? Wigner crystal
When does it freeze? 10

Polarizad fuid?

-~
)

10"

tlacyon dans

-

Clagsicd plasma

What is spin
polarization? 0 10 100 1000

Tempergure (K)

What are properties?
' <r, classical OCP

I' =175 classical melting log(I)



Jastrow factor for the e-gas

* Look at local energy either in r space or k-space:
* r-space as 2 electrons get close gives cusp condition: du/dr|,=-1
« K-space, charge-sloshing or plasmon modes.

20u, = |-

oC ——
Akc* 2
« Can combine 2 exact properties in the Gaskell form. Write E,, in terms structure
factor making “random phase approximation.” (RPA).

_ 1 1 Vi oz
2pu, =—5-+ \/ 5 e S, = 1deal structure factor

* Optimization can hardly improve this form for the e-gas in either 2 or 3 dimensions.
RPA works better for trial function than for the energy.

« NEED EWALD SUMS because potential trial function is long range, it also decays
as 1/r, but it 1s not a simple power.

fr_l 3D Long range properties important
. Y eGive rise to dielectric properties
hm”—"’" u(r) =17 2D eEnergy is insensitive to u, at
log(r) 1D small k
) eThose modes converge t~1/k>2




Wavetunctions beyond Jastrow | smoothing

-
Use method of residuals construct ¢ (R)= ¢ ( R)e‘“?’n He,>
a sequence of increasingly better Sk
JoJ
= e J

trial wave functions. Justify from
the Importance sampled DMC. 7

Zeroth order is Hartree-Fock E, =V (R)
wavefunction

_ 4 oUR)
First order is Slater-Jastrow pair B = de

wavefunction (RPA for electrons E =U(R) —[VW(R):F _H.Ek . (r. Ry .Y(R))
J J J

gives an analytic formula) .
J

Second order is 3-body backflow
wavefunction

Three-body form is like a squared
force. It is a bosonic term that does
not change the nodes.

exp{ D[ &(r)(x, - r)F}



Backflow wave function

ik;r; KX
« Backflow means change the Det{e™ } = Det{e "}
coordinates to quasi- coordinates.
X, =r+ Enij(r“)(ri - rj)
J

* Leads to a much improved energy
and to improvement in nodal

surfaces. Couples nodal surfaces 3DEG
together.
1 O | v |}
Kwon PRB 58, 6800 (1998).
08 S 3 .
_06 | -
% .0
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Dependence of energy on wavefunction
3d Electron fluid at a density r,=10
Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998

Wavefunctions -0.107
— Slater-Jastrow (SJ) _ ]
— three-body (3) -0.1075 7
— backflow (BF)

~ fixed-node (FN) 0108 -

Energy <o |H| @> converges to g d
state

%B’

-0.1085 +

e

-0.109 |
0 0.05 0.1

Variance <¢ [H-E]? ¢> to zero.

Using 3B-BF gains a factor of 4.
Using DMC gains a factor of 4.

Variance



Summary of Variational (VMC)

1.E+01
Simple trial function

LE+00 {.
T
G
= 1.E-02 - -
= Better trial function
*1E03~

1LE-04 - applications

1.E'05 T I I I I T T

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

computer time (sec)



Summary and problems with variational
methods

» Powerful method since you can

, , Optimization is time consuming
use any trial function

, _ * Energy is insensitive to order
* Scaling (computational effort parameter

vs. size) is almost classical « Non-energetic properties are less

» Learn directly about what accurate. O(1) vs. O(2) for energy.
works in wavefunctions « Difficult to find out how accurate
° NO Sign problem results are.

» Favors simple states over more
complicated states, e.g.

— Solid over liquid
— Polarized over unpolarized

What goes into the trial wave function comes out! “GIGO”

We need a more automatic method! Projector Monte Carlo



